Abstract

Due to the instinct complexity and the large scale non-stationary of so-called sea-clutter, radar backscatters from ocean surface, it is always challenging to detect the weak marine target. In classical statistical approaches, the seaclutter is modeled as several kinds of stochastic processes, which are found inadequate, especially in high sea-state circumstances. Therefore it is reasonable to discover the underlying dynamics that is responsible for generating the time series of sea-clutter. In this work, we take into account of the marine target detection from the X-Band seaclutter datasets with low Signal-Clutter-Ratio, and propose adequate methods to process these non-stationary data, including Empirical Mode Decomposition and Topological Data Analysis. Both theoretical simulation and experimental results indicate the proposed method's usefulness of for marine target detection, which is implemented by extract different structural features from measured sea-clutter data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.