Abstract

Ongoing climate change is predicted to trigger major shifts in the geographic distribution of marine plankton species. However, it remains unclear whether species will successfully track optimal habitats to new regions, or face extinction. Here we show that one significant zooplankton group, the radiolaria, underwent a severe decline in high latitude species richness presaged by ecologic reorganization during the late Neogene, a time of amplified polar cooling. We find that the majority (71%) of affected species did not relocate to the warmer low latitudes, but went extinct. This indicates that some plankton species cannot track optimal temperatures on a global scale as assumed by ecologic models; instead, assemblages undergo restructuring and extinction once local environmental thresholds are exceeded. This pattern forewarns profound diversity loss of high latitude radiolaria in the near future, which may have cascading effects on the ocean food web and carbon cycle.

Highlights

  • Ongoing climate change is predicted to trigger major shifts in the geographic distribution of marine plankton species

  • Our results show that Southern Ocean (SO) assemblages underwent a severe decline in species richness (~35%), preceded by ecological restructuring, which we interpret as a threshold response to relatively high-magnitude temperature change

  • We find that the tropics did not serve as a habitat refuge for 71% species extirpated from the SO, indicating that marine plankton species cannot always track preferred habitats on a global scale and are instead acutely vulnerable to extinction during intervals of considerable climate change

Read more

Summary

Introduction

Ongoing climate change is predicted to trigger major shifts in the geographic distribution of marine plankton species. We compare radiolarian diversity dynamics at low versus high latitudes to infer the evolutionary and ecological impacts of differential regional climate change over the last 10 million years.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.