Abstract

Minerals is required small amounts among various nutrients, but it has a significant impact on sow longevity and reproduction performance. This study was carried out to see the beneficial effects of marine-derived Ca-Mg complex on the reproductive performance of sows during four-parity periods. Seventy-two gilts ([Yorkshire × Landrace] × Duroc), with an average body weight of 181 kg, were randomly allocated to three groups; CON (basal diet), 0.3LC (CON - MgO - 0.3% limestone + 0.4% Ca-Mg complex), and 0.7LC (CON - MgO - 0.7% limestone + 0.4% Ca-Mg complex). During parity 3 and 4, the expression level of SCD gene was lower in the umbilical cord of piglets born to 0.3LC and 0.7LC sows compared with the CON sows. During parity 2, 3 and 4, SLC2A2 and FABP4 gene expressions were higher in the umbilical cord of piglets born to 0.7LC sows and the placenta of sows from 0.3LC groups, respectively. Ca-Mg complex increased (p < 0.05) Ca and Mg concentrations in sows and their piglets' serum as well as in colostrum regardless of parities. The serum vitamin D concentration was higher (p < 0.05) in their first parity, whereas serum prolactin and estrogen concentrations were higher (p < 0.05) during the fourth and third parity, respectively. The growth hormone concentrations were higher (p < 0.05) in the piglets born to sows during the first and second parity. The fat and immunoglobulin A (IgA) concentrations in colostrum were higher (p < 0.05) during the third and fourth parity, respectively. A reduction (p < 0.05) in salivary cortisol, epinephrine, and norepinephrine concentrations was observed in 0.3LC and 0.7LC sow groups compared with CON after farrowing regardless of parity, however before farrowing, a reduction in norepinephrine was observed. Before farrowing, the epinephrine and norepinephrine concentrations were higher (p < 0.05) during the first and second parity. After farrowing, the concentration of these hormones was higher during the second parity. Taken together, sows' parity and dietary Ca-Mg complex supplementation influenced serum metabolites, colostrum nutrients, stress hormones as well as the gene expressions related to lipid and glucose metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call