Abstract
It has been shown that 17β-estradiol (E2) hormone is an essential biological factor for increasing the sensitivity of women to drug abuse. Recent studies have shown a potential overlap between the molecular pathways of cannabinoids and ovarian hormones. The current study evaluated the interference between the marijuana and E2 effect on spatial learning and memory and the role of the G protein-coupled estrogen receptor (GPR30) in young female rats. The animals were separated into two main groups: intact-ovary and ovariectomized (OVX) rats. The latter group received intraperitoneal injections of E2, G-1 (GPR30 agonist), G-15 (GPR30 antagonist), marijuana, and different combinations of these substances for 28 days. Spatial learning and memory were evaluated by the Morris water maze (MWM) test. We also assessed the BDNF (brain-derived neurotrophic factor) concentration and the hippocampal level of GPR30. The results showed a significant reduction of spatial learning and memory in OVX rats compared to intact-ovary rats, which were restored by E2 replacement. Moreover, treatment with G-1 mimicked E2 effects on spatial learning and memory. Marijuana impaired spatial learning and memory in intact-ovary rats, while improved in OVX rats. We also found that treatment with M + E2 induced significant impairment in spatial learning and memory; however, treatment with M + G1 and M + G15 + E2 showed no significant difference. No significant differences in BDNF expression were observed in experimental groups. These results suggest that marijuana and E2 interact in their effect on spatial learning and memory in young female rats, but GPR30 seems to play no role in this interaction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have