Abstract

How can we efficiently and scalably cluster high-dimensional data? Thek-means algorithm clusters data by iteratively reducing intra-cluster Euclidean distances until convergence. While it finds applications from recommendation engines to image segmentation, its application to high-dimensional data is hindered by the need to repeatedly compute Euclidean distances among points and centroids. In this paper, we propose Marigold (k-means for high-dimensional data), a scalable algorithm fork-means clustering in high dimensions. Marigold prunes distance calculations by means of (i) a tight distance-bounding scheme; (ii) a stepwise calculation over a multiresolution transform; and (iii) exploiting the triangle inequality. To our knowledge, such an arsenal of pruning techniques has not been hitherto applied tok-means. Our work is motivated by time-critical Angle-Resolved Photoemission Spectroscopy (ARPES) experiments, where it is vital to detect clusters among high-dimensional spectra in real time. In a thorough experimental study with real-world data sets we demonstrate that Marigold efficiently clusters high-dimensional data, achieving approximately one order of magnitude improvement over prior art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.