Abstract

Latent class growth analysis is increasingly proposed as a solution to summarize the observed longitudinal treatment into a few distinct groups. When latent class growth analysis is combined with standard approaches like Cox proportional hazards models, confounding bias is not properly addressed because of time-varying covariates that have a double role of confounders and mediators. We propose to use latent class growth analysis to classify individuals into a few latent classes based on their medication adherence pattern, then choose a working marginal structural model that relates the outcome to these groups. The parameter of interest is defined as a projection of the true marginal structural model onto the chosen working model. Simulation studies are used to illustrate our approach and compare it with unadjusted, baseline covariates adjusted, time-varying covariates adjusted, and inverse probability of trajectory groups weighted adjusted models. Our proposed approach yielded estimators with little or no bias and appropriate coverage of confidence intervals in these simulations. We applied our latent class growth analysis and marginal structural model approach to a database comprising information on 52,790 individuals from the province of Quebec, Canada, aged more than 65 and who were statin initiators to estimate the effect of statin-usage trajectories on a first cardiovascular event.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.