Abstract
BackgroundWe evaluate the combined effect of the presence of elevated depressive symptoms and antidepressant medication use with respect to risk of type 2 diabetes among approximately 120,000 women enrolled in the Women’s Health Initiative (WHI), and compare several different statistical models appropriate for causal inference in non-randomized settings.MethodsData were analyzed for 52,326 women in the Women’s Health Initiative Clinical Trials (CT) Cohort and 68,169 women in the Observational Study (OS) Cohort after exclusions. We included follow-up to 2005, resulting in a median duration of 7.6 years of follow up after enrollment. Results from three multivariable Cox models were compared to those from marginal structural models that included time varying measures of antidepressant medication use, presence of elevated depressive symptoms and BMI, while adjusting for potential confounders including age, ethnicity, education, minutes of recreational physical activity per week, total energy intake, hormone therapy use, family history of diabetes and smoking status.ResultsOur results are consistent with previous studies examining the relationship of antidepressant medication use and risk of type 2 diabetes. All models showed a significant increase in diabetes risk for those taking antidepressants. The Cox Proportional Hazards models using baseline covariates showed the lowest increase in risk , with hazard ratios of 1.19 (95 % CI 1.06 – 1.35) and 1.14 (95 % CI 1.01 – 1.30) in the OS and CT, respectively. Hazard ratios from marginal structural models comparing antidepressant users to non-users were 1.35 (95 % CI 1.21 – 1.51) and 1.27 (95 % CI 1.13 – 1.43) in the WHI OS and CT, respectively – however, differences among estimates from traditional Cox models and marginal structural models were not statistically significant in both cohorts. One explanation suggests that time-dependent confounding was not a substantial factor in these data, however other explanations exist. Unadjusted Cox Proportional Hazards models showed that women with elevated depressive symptoms had a significant increase in diabetes risk that remained after adjustment for confounders. However, this association missed the threshold for statistical significance in propensity score adjusted and marginal structural models.ConclusionsResults from the multiple approaches provide further evidence of an increase in risk of type 2 diabetes for those on antidepressants.
Highlights
We evaluate the combined effect of the presence of elevated depressive symptoms and antidepressant medication use with respect to risk of type 2 diabetes among approximately 120,000 women enrolled in the Women’s Health Initiative (WHI), and compare several different statistical models appropriate for causal inference in nonrandomized settings
We compare four statistical approaches to evaluate the combined effect of the presence of elevated depressive symptoms and antidepressant medication use on incident type 2 diabetes using data on approximately 120,000 women in the Women’s Health Initiative (WHI)
The objective of this work was to estimate the combined effect of antidepressant medication use/presence of elevated depressive symptoms on type 2 diabetes in the WHI, and to compare results obtained from Marginal structural models (MSMs) and propensity score adjusted Cox models to more traditional approaches such Cox models [9, 14, 15]
Summary
We evaluate the combined effect of the presence of elevated depressive symptoms and antidepressant medication use with respect to risk of type 2 diabetes among approximately 120,000 women enrolled in the Women’s Health Initiative (WHI), and compare several different statistical models appropriate for causal inference in nonrandomized settings. Examples of off-label use include treatment for certain types of pain, fibromyalgia, insomnia, and general unhappiness. In this analysis, we compare four statistical approaches to evaluate the combined effect of the presence of elevated depressive symptoms and antidepressant medication use on incident type 2 diabetes using data on approximately 120,000 women in the Women’s Health Initiative (WHI)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have