Abstract

Many analyses for incomplete longitudinal data are directed to examining the impact of covariates on the marginal mean responses. We consider the setting in which longitudinal responses are collected from individuals nested within clusters. We discuss methods for assessing covariate effects on the mean and association parameters when covariates are incompletely observed. Weighted first and second order estimating equations are constructed to obtain consistent estimates of mean and association parameters when covariates are missing at random. Empirical studies demonstrate that estimators from the proposed method have negligible finite sample biases in moderate samples. An application to the National Alzheimer's Coordinating Center (NACC) Uniform Data Set (UDS) demonstrates the utility of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.