Abstract
We show that quantum subdynamics of an open quantum system can always be described by a linear, Hermitian map irrespective of the form of the initial total system state. Since the theory of quantum error correction was developed based on the assumption of completely positive (CP) maps, we present a generalized theory of linear quantum error correction, which applies to any linear map describing the open system evolution. In the physically relevant setting of Hermitian maps, we show that the CP-map-based version of quantum error correction theory applies without modifications. However, we show that a more general scenario is also possible, where the recovery map is Hermitian but not CP. Since non-CP maps have nonpositive matrices in their range, we provide a geometric characterization of the positivity domain of general linear maps. In particular, we show that this domain is convex and that this implies a simple algorithm for finding its boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.