Abstract

Genomic biomarkers such as DNA methylation (DNAm) are employed for age prediction. In recent years, several studies have suggested the association between changes in DNAm and its effect on human age. The high dimensional nature of this type of data significantly increases the execution time of modeling algorithms. To mitigate this problem, we propose a two-stage parallel algorithm for selection of age related CpG-sites. The algorithm first attempts to cluster the data into similar age ranges. In the next stage, a parallel genetic algorithm (PGA), based on the MapReduce paradigm (MR-based PGA), is used for selecting age-related features of each individual age range. In the proposed method, the execution of the algorithm for each age range (data parallel), the evaluation of chromosomes (task parallel) and the calculation of the fitness function (data parallel) are performed using a novel parallel framework. In this paper, we consider 16 different healthy DNAm datasets that are related to the human blood tissue and that contain the relevant age information. These datasets are combined into a single unioned set, which is in turn randomly divided into two sets of train and test data with a ratio of 7:3, respectively. We build a Gradient Boosting Regressor (GBR) model on the selected CpG-sites from the train set. To evaluate the model accuracy, we compared our results with state-of-the-art approaches that used these datasets, and observed that our method performs better on the unseen test dataset with a Mean Absolute Deviation (MAD) of 3.62 years, and a correlation (R2) of 95.96% between age and DNAm. In the train data, the MAD and R2 are 1.27 years and 99.27%, respectively. Finally, we evaluate our method in terms of the effect of parallelization in computation time. The algorithm without parallelization requires 4123 min to complete, whereas the parallelized execution on 3 computing machines having 32 processing cores each, only takes a total of 58 min. This shows that our proposed algorithm is both efficient and scalable.

Highlights

  • Aging is a natural and undeniable process in the life of living organisms

  • By comparing the results of Gradient Boosting Regressor (GBR) model of this paper and the results reported in [4] we found that the features that were most relevant to that age range

  • We found that Mean Absolute Deviation (MAD) of MR-based parallel genetic algorithm (PGA) achieved superior results in are unable to find the set ofresearch features that work best together

Read more

Summary

Introduction

Aging is a natural and undeniable process in the life of living organisms. This process is affected by various factors such as inheritance, environment, lifestyle and disease [1]. The aging process alters the telomeres, gene expression and cellular structures in living organisms. One can find out about the biological changes that occur in the body [2]. Several biomarkers can be used for age predicton. One of the human age-related biomarkers is DNA methylation (DNAm), which is biologically and chemically more stable than biomarkers such as RNA messenger (mRNA)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.