Abstract

Background and ObjectiveThe study of human aging contributes to disease prevention, treatment and life extension. Recently, epigenetics studies have evidenced that there is a close association between DNA methylation and human ages. A quantitatively statistical modeling between DNA methylation and ages could predict the person's age more accurately. MethodsWe propose a regression model to predict human age based on gradient boosting regressor (GBR). We collect a total of 1280 publicly available non-blood tissues samples with ages ranged from 0 to 90 years old. We calculate the Pearson correlation between CpG's DNA methylation level and age to select age-related CpGs. ResultsThirteen age-related CpG sites are selected. GBR has the smallest mean absolute deviation to the actual age comparing with other three different models including Bayesian ridge, multiple linear regression, and support vector regression. In the training datasets, the cross-validation results show that the correlation R2 between predicted age and DNA methylation is 0.89, and the mean absolute deviation is 4.66 years. In an independent testing set with 262 samples, the GBR achieves the mean absolute deviation of 6.08 years. Meanwhile we also briefly describe the function of the selected thirteen CpG sites. ConclusionsWe build an age predictor to study the association between ages and the DNA methylation of human non-blood tissues. Our new model provides a more accurate estimation of human ages which will be instrumental for understanding the regulation of DNA methylation on human aging and will accurately monitor the individual aging process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.