Abstract
In this work, we introduce an end-to-end workflow for very high-resolution satellite-based mapping, building the basis for important 3D mapping products: (1) digital surface model, (2) digital terrain model, (3) normalized digital surface model and (4) ortho-rectified image mosaic. In particular, we describe all underlying principles for satellite-based 3D mapping and propose methods that extract these products from multi-view stereo satellite imagery. Our workflow is demonstrated for the Pléiades satellite constellation, however, the applied building blocks are more general and thus also applicable for different setups. Besides introducing the overall end-to-end workflow, we need also to tackle single building blocks: optimization of sensor models represented by rational polynomials, epipolar rectification, image matching, spatial point intersection, data fusion, digital terrain model derivation, ortho rectification and ortho mosaicing. For each of these steps, extensions to the state-of-the-art are proposed and discussed in detail. In addition, a novel approach for terrain model generation is introduced. The second aim of the study is a detailed assessment of the resulting output products. Thus, a variety of data sets showing different acquisition scenarios are gathered, allover comprising 24 Pléiades images. First, the accuracies of the 2D and 3D geo-location are analyzed. Second, surface and terrain models are evaluated, including a critical look on the underlying error metrics and discussing the differences of single stereo, tri-stereo and multi-view data sets. Overall, 3D accuracies in the range of 0.2 to 0.3 m in planimetry and 0.2 to 0.4 m in height are achieved w.r.t. ground control points. Retrieved surface models show normalized median absolute deviations around 0.9 m in comparison to reference LiDAR data. Multi-view stereo outperforms single stereo in terms of accuracy and completeness of the resulting surface models.
Highlights
For many applications in remote sensing, highly accurate and up-to-date mapping information gathered from very high resolution (VHR) satellite stereo images is needed
This work focuses on the generation of those 3D mapping products on the example of images gathered from the Pléiades satellite constellation
We show the distributions of height differences of a stereo digital surface models (DSM) from test site Ljubljana with the classical normal distribution fits based on mean and standard deviation and the robust fits based on median and nmAD
Summary
For many applications in remote sensing, highly accurate and up-to-date mapping information gathered from very high resolution (VHR) satellite stereo images is needed. To allow semantic analysis those applications need mapping products in form of digital surface models (DSM), digital terrain models (DTM), their difference, that is, normalized digital surface models (nDSM) and the according multi-spectral ortho-rectified images. All this information can be extracted from stereo or multi-view satellite imagery. This work focuses on the generation of those 3D mapping products on the example of images gathered from the Pléiades satellite constellation. The central contributions of this work can be summarized as follows:
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have