Abstract

Savanna ecosystems are geographically extensive and both ecologically and economically important, and require monitoring over large spatial extents. Remote-sensing-based characterization of vegetation properties in savannas is methodologically challenging, mainly due to high structural and functional heterogeneity. Recent advances in object-based image analysis (OBIA) and machine learning algorithms offer new opportunities to address these challenges. Focusing on the semi-arid savanna ecosystem in the central Kalahari, this study examined the suitability of a hierarchical OBIA approach combined with in situ data and an ensemble classification technique for mapping vegetation morphology types at landscape scale. A stack of Landsat TM imagery, NDVI, and topographic variables was segmented with six different scale factors resulting in a hierarchical network of image objects. Sample objects for each vegetation morphology class were selected at each segmentation scale and classification was performed using optimal features consisting of spectral and textural features. Overall and class-specific classification accuracies were compared across the six scales to examine the influence of segmentation scale on each. Results suggest that the highest overall classification accuracy (i.e. 85.59%) was observed not at the finest segmentation scale, but at coarse segmentation. Additionally, individual vegetation morphology classes differed in the segmentation scale at which they achieved highest classification accuracy, reflecting their unique ecology and physiognomic composition. While classes with high vegetation density/height attained higher accuracy at fine segmentation scale, those with lower vegetation density/height reached higher classification accuracy at coarse segmentation scales. Contrarily, for pans and bare areas, accuracy was relatively unaffected by changing segmentation scale. Variable importance plots suggested that spectral features were the most important, followed by textural variables. These results show the utility of the OBIA approach and emphasize the requirement of multi-scale analysis for accurately characterizing savanna systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.