Abstract
Accurate runoff forecasting plays a considerable role in the appropriate water resource planning and management. The spatial and temporal evaluation of the flood susceptibility was explored in the Quebec basin, Canada. This study provides a new strategy for runoff modelling as one of the complicated variables by developing new machine learning techniques along with remote sensing. A novel scheme of the Group Method of Data Handling (GMDH) known as the generalized structure of GMDH (GSGGMDH) is developed to overcome this classical approach's limitation. A simple time series based scenario with exogenous variables including precipitation and Normalized Difference Vegetation Index (NDVI) was introduced for runoff forecasting. MODIS data included MOD13Q1 product was employed and a JavaScript code was developed to preprocess collected data in the Google Earth Engine (GEE) environment. Using different seasonal and non-seasonal lags of all input variables, the developed GSGMDH found the most optimum input combination for each station in terms of simplicity and accuracy, simultaneously (average values; SI = 0.554, RMSRE = 1.55, MAE = 5.076). The precipitation values are modelled with the CanEsm2 climate change model. To apply NDVI for runoff forecasting, a simple spatial-temporal GSGMDH based model was developed (average values; SI = 0.27; RMSRE = 8.27, MAE = 0.08). The forecasting results indicated that the months in which the maximum runoff occurred have changed, and these months have increased compared to the historic period. In the historical period, the frequency of maximum runoff was in April and March. Still, for the two forecasting periods (i.e. 2020–2039 and 2040–2059), the months in which the maximum runoff has occurred have changed, and their amount has been reduced and added to other months, especially February and August.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have