Abstract

ABSTRACT We report new observations from a systematic, spectroscopic, ultraviolet absorption-line survey that maps the spatial and kinematic properties of the high velocity gas in the Galactic Center (GC) region. We examine the hypothesis that this gas traces the biconical nuclear outflow. We use an ultraviolet spectra of 47 background QSOs and halo stars projected inside and outside the northern Fermi Bubble from the Hubble Space Telescope to study the incidence of high velocity absorption around it. We use five lines of sight inside the northern Fermi Bubble to constrain the velocity and column densities of outflowing gas traced by O i, Al ii, C ii, C iv, Si ii, Si iii, Si iv, and other species. We find that all five lines of sight inside the northern Fermi Bubble exhibit blueshifted high velocity absorption components, whereas only 9 out of the 42 lines of sight outside the northern Fermi Bubble exhibit blueshifted high velocity absorption components. The observed outflow velocity profile decreases with Galactic latitude and radial distance (R) from the GC. The observed blueshifted velocities change from at R ≈ 2.3 kpc to at R ≈ 6.5 kpc. We derive the metallicity of the entrained gas along the 1H1613-097 sightline, one that passes through the center of the northern Fermi Bubble, finding [O/H] ≳ −0.54 ± 0.15. A simple kinematic model, tuned to match the observed absorption component velocities along the five lines of sight inside the Bubble, constrains the outflow velocities to ≈1000–1300 , and the age of the outflow to be ∼6–9 Myr. We estimate a minimum mass outflow rate for the nuclear outflow to be . Combining the age and mass outflow rates, we determine a minimum mass of total UV-absorbing cool gas entrained in the Fermi Bubbles to be .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.