Abstract

Context. Rapidly rotating, chemically homogeneously evolving massive stars are considered to be progenitors of long gamma-ray bursts. Aims. We present numerical simulations of the evolution of the circumstellar medium around a rapidly rotating 20 Mstar at a metal- licity of Z = 0.001. Its rotation is fast enough to produce quasi-chemically homogeneous evolution. While conventionally, a star of 20 Mwould not evolve into a Wolf-Rayet stage, the considered model evolves from the main sequence directly to the helium main sequence. Methods. We use the time-dependent wind parameters, such as mass loss rate, wind velocity and rotation-induced wind anisotropy from the evolution model as input for a 2D hydrodynamical simulation. Results. While the outer edge of the pressure-driven circumstellar bubble is spherical, the circumstellar medium close to the star shows strong non-spherical features during and after the periods of near-critical rotation. Conclusions. We conclude that the circumstellar medium around rapidly rotating massive stars differs considerably from the sur- rounding material of non-rotating stars of similar mass. Multiple blue-shifted high velocity absorption components in gamma-ray burst afterglow spectra are predicted. As a consequence of near critical rotation and short stellar evolution time scales during the last few thousand years of the star's life, we find a strong deviation of the circumstellar density profile in the polar direction from the 1/R 2 density profile normally associated with stellar winds close to the star.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call