Abstract
Electronic states of a molecule are usually analyzed via their decomposition in linear superposition of multielectronic Slater determinants built up from monoelectronics molecular orbitals. It is generally believed that a scanning tunneling microscope (STM) is able to map those molecular orbitals. Using a low-temperature ultrahigh vacuum (LT-UHV) STM, the dI/dV conductance maps of large single hexabenzocoronene (HBC) monomer, dimer, trimer, and tetramer molecules were recorded. We demonstrate that the attribution of a tunnel electronic resonance to a peculiar π molecular orbital of the molecule (or σ intermonomer chemical bond) in the STM junction is inappropriate. With an STM weak-measurement-like procedure, a dI/dV resonance results from the conductance contribution of many molecular states whose superposition makes it difficult to reconstruct an apparent molecular orbital electron probability density map.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have