Abstract
The objective of this paper is to demonstrate a new method to map the distributions of C3 and C4 grasses at 30m resolution and over a 25-year period of time (1988–2013) by combining the Random Forest (RF) classification algorithm and patch stable areas identified using the spatial pattern analysis software FRAGSTATS. Predictor variables for RF classifications consisted of ten spectral variables, four soil edaphic variables and three topographic variables. We provided a confidence score in terms of obtaining pure land cover at each pixel location by retrieving the classification tree votes. Classification accuracy assessments and predictor variable importance evaluations were conducted based on a repeated stratified sampling approach. Results show that patch stable areas obtained from larger patches are more appropriate to be used as sample data pools to train and validate RF classifiers for historical land cover mapping purposes and it is more reasonable to use patch stable areas as sample pools to map land cover in a year closer to the present rather than years further back in time. The percentage of obtained high confidence prediction pixels across the study area ranges from 71.18% in 1988 to 73.48% in 2013. The repeated stratified sampling approach is necessary in terms of reducing the positive bias in the estimated classification accuracy caused by the possible selections of training and validation pixels from the same patch stable areas. The RF classification algorithm was able to identify the important environmental factors affecting the distributions of C3 and C4 grasses in our study area such as elevation, soil pH, soil organic matter and soil texture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Earth Observation and Geoinformation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.