Abstract

The proper function of enzymes often depends upontheir efficient interconversion between particular conformational sub-states on a free-energy landscape. Experimentally characterizing these sub-states is challenging, which has limited our understanding of the role of protein dynamics in many enzymes. Here, we have used a combination of kinetic crystallography and detailed analysis of crystallographic protein ensembles to map the accessible conformational landscape of an insect carboxylesterase (LcαE7) as it traverses all steps in its catalytic cycle. LcαE7 is of special interest because of its evolving role in organophosphate insecticide resistance. Our results reveal that a dynamically coupled network of residues extends from the substrate-binding site to a surface loop. Interestingly, the coupling ofthis network that is apparent in the apoenzyme appears to be reduced in the phosphorylated enzyme intermediate. Altogether, the results of this work highlight the importance of protein dynamics to enzyme function and the evolution of new activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.