Abstract

Many proteins function in the crystalline state, making crystallography a tool that, beside structure, can address mechanism. By initiating biological turnover in the crystal, transient structural species form, which may be filmed ‘on the fly’ by Laue diffraction or captured by trapping methods. These strategies are jointly referred to as ‘kinetic crystallography’. In this article, we review the general concepts of kinetic crystallography in the context of the conformational energy landscape of a protein. Whereas Laue diffraction is best suited to the investigation of cyclic, ultra-fast and light-triggered reactions, trapping approaches, on the other hand, are applicable to a wider range of biological systems but require care to avoid artefacts. Complementary methods – mainly UV/visible single-crystal spectroscopy – have proven essential to design, interpret and validate kinetic crystallography experiments. Achievements in the field as well as remaining puzzling questions are considered through the examination of recently published work: real-time-resolved crystallography of dimeric haemoglobin based on pump-probe Laue diffraction, temperature-trapping crystallography of acetylcholinesterase based on photo- and radio-induced ligand cleavage, and lattice-trapping crystallography of superoxide reductase based on product soaking and the combined use of X-ray diffraction and Raman spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call