Abstract
We Analyze data parallel programming of some general purpose methods in linear algebra. Specifically, the projection methods to solve very large linear system and/or eigenproblem. The expensive parts of these methods are their projection phases. This portion of these algorithms has generally, a very simple structure for such a programming model. It is composed essentially of matrix-vector multiplications and inner-products. Then, we simply need to find a good data distribution in order to obtain a well adapted communication pattern and not loose too much storage space. We begin with a survey of data parallel behavior of some projection methods such as Arnoldi, GMRES, Lanczos, PRR,... After analyzing some methods of data mapping onto virtual processors we point out that for a fixed number of physical processors, the performances are a function of the mapping method. We will see also that the maximum size of the problems which can be solved on the architectures supporting the data parallel programming model is a function of the data mapping method. In conclusion we present the performances obtained on a Connection Machine 5 (CM5).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.