Abstract
Full-waveform inversions were applied to retrieve surface, two-layered and continuous soil moisture profiles from ground penetrating radar (GPR) data acquired in an 11-ha agricultural field situated in the loess belt area in central Belgium. The radar system consisted of a vector network analyzer combined with an off-ground horn antenna operating in the frequency range 200–2000 MHz. The GPR system was computer controlled and synchronized with a differential GPS for real-time data acquisition. Several inversion strategies were also tested using numerical experiments, which in particular demonstrated the potentiality to reconstruct simplified two-layered configurations from more complex, continuous dielectric profiles as prevalent in the environment. The surface soil moisture map obtained assuming a one-layered model showed a global moisture pattern mainly explained by the topography while local moisture patterns indicated a line effect. Two-layered and profile inversions provided consistent estimates with respect to each other and field observations, showing significant moisture increases with depth. However, some discrepancies were observed between the measured and modeled GPR data in the higher frequency ranges, mainly due to surface roughness effects which were not accounted for. The proposed GPR method and inversion strategies showed great promise for high-resolution, real-time mapping of soil moisture at the field scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.