Abstract
Isotropic and anisotropic seismic structures across the Northern Apennines (Italy) subduction zone are imaged using a new method for the analysis of teleseismic receiver functions (RFs). More than 13,000 P‐wave coda of teleseismic records from the 2003–2007 Retreating‐Trench, Extension, and Accretion Tectonics (RETREAT) experiment are used to provide new insights into a peculiar subduction zone between two continental plates that is considered a focal point of Mediterranean evolution. A new methodology for the analysis of receiver functions is developed, which combines both migration and harmonic decomposition of the receiver function data set. The migration technique follows a classical “Common Conversion Point” scheme and helps to focus on a crucial depth range (20–70 km) where the mantle wedge develops. Harmonic decomposition of a receiver function data set is a novel and less explored approach to the analysis of P‐to‐S converted phases. The separation of the back‐azimuth harmonics is achieved through a numerical regression of the stacked radial and transverse receiver functions from which we obtain independent constraints on both isotropic and anisotropic seismic structures. The application of our method to the RETREAT data set succeeds both in confirming previous knowledge about seismic structure in the area and in highlighting new structures beneath the Northern Apennines chain, where previous studies failed to clearly retrieve the geometry of the subducted interfaces. We present our results in closely spaced profiles across and along the Northern Apennines chain to highlight the convergence of the Tyrrhenian and the Adriatic microplates which differ in their crustal structure where the Adriatic microplate subducts beneath Tuscany and the Tyrrhenian sea. A signature of the dipping Adriatic Moho is clearly observed beneath the Tyrrhenian Moho in a large portion of the forearc region. In the area where the two Mohos overlap, our new analysis reveals the presence of an anisotropic body above the subducted Moho. There is a strong Ps converted phase with anisotropic characteristics from the top of the Adriatic plate to a depth of at least 80 km. Because the Ps conversion occurs much deeper than similar Ps phases in Cascadia and Japan, dehydration of oceanic crust seems unlikely as a causative factor. Rather, the existence of this body trapped between the two interfaces supports the hypothesis of lower crustal delamination in a postsubduction tectonic setting.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have