Abstract

Both scalp and intracranial electroencephalograms (EEGs) are of great importance for diagnosing brain disorders. However, the scalp EEG (sEEG) is attenuated by the skull and contaminated with artifacts. At the same time, intracranial EEG (iEEG) is almost free of artifacts and can capture all brain activities without any attenuation due to being close to the brain sources. In this study, the aim is to enhance the performance of sEEG by mapping the sEEG to the iEEG. To do so, we here develop a deep neural network using a generative adversarial network to estimate the sEEG from the iEEG. The proposed method is applied to sEEG and iEEG recorded simultaneously from epileptics to detect interictal epileptiform discharges (IEDs). The proposed method detects IEDs with 76% accuracy outperforming the state-of-the-art methods. Furthermore, it is at least twelve times less complex than the compared methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.