Abstract

An (Awassi × Merino) × Merino single-sire backcross family with 165 male offspring was used to map quantitative trait loci (QTL) for body composition traits on a framework map of 189 microsatellite loci across all autosomes. Two cohorts were created from the experimental progeny to represent alternative maturity classes for body composition assessment. Animals were raised under paddock conditions prior to entering the feedlot for a 90-day fattening phase. Body composition traits were derived in vivo at the end of the experiment prior to slaughter at 2 (cohort 1) and 3.5 (cohort 2) years of age, using computed tomography. Image analysis was used to gain accurate predictions for 13 traits describing major fat depots, lean muscle, bone, body proportions and body weight which were used for single- and two-QTL mapping analysis. Using a maximum-likelihood approach, three highly significant (LOD ≥ 3), 15 significant (LOD ≥ 2), and 11 suggestive QTL (1.7 ≤ LOD < 2) were detected on eleven chromosomes. Regression analysis confirmed 28 of these QTL and an additional 17 suggestive (P < 0.1) and two significant (P < 0.05) QTL were identified using this method. QTL with pleiotropic effects for two or more tissues were identified on chromosomes 1, 6, 10, 14, 16 and 23. No tissue-specific QTL were identified.A meta-assembly of ovine QTL for carcass traits from this study and public domain sources was performed and compared with a corresponding bovine meta-assembly. The assembly demonstrated QTL with effects on carcass composition in homologous regions on OAR1, 2, 6 and 21.

Highlights

  • Sheep production is a major contributor to global food production and sheep are one of the few sources of meat with little cultural and religious restriction in consumption

  • No significant correlations were detected between carcass bone, total bone and eye muscle area and most of the other traits (Additional file 4)

  • Even though we identified quantitative trait loci (QTL) for final body weight on both chromosomes, we could not detect an interaction between these two QTL and assume that the genes underlying these two QTL act in a simple additive fashion

Read more

Summary

Introduction

Sheep production is a major contributor to global food production and sheep are one of the few sources of meat with little cultural and religious restriction in consumption. Body composition traits in sheep, primarily muscle mass and fatness, are economically important to the sheep meat industry. Live-weight is considered as a standard measurement of body mass, but is a poor indicator of body composition due to the inability to distinguish between different stages of physiological maturity. Body weight may be used as indicator of body composition in animals of similar genetic backgrounds and at the same physiological maturity, at different maturity stages the accuracy is greatly reduced [2,3]. Improved predictions of carcass composition can be determined by using ultrasound. Such scans provide a basis to estimate breeding values for eye muscle area and subcutaneous fat depth [3,4,5]. Increased accuracy and prediction of full body carcass characteristics can be achieved using computed tomography (CT) [6,7] but this is not routinely implemented due to cost constraints

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call