Abstract

Growing evidence implicates systemic inflammation in the loss of structural brain integrity in natural ageing and disorder development. Chronic stress and glucocorticoid exposure can potentiate inflammatory processes and may also be linked to neuronal atrophy, particularly in the hippocampus and the human neocortex. To improve understanding of emerging maladaptive interactions between stress and inflammation, this study examined evidence for glucocorticoid- and inflammation-mediated neurodegeneration in healthy mid-aged adults.N = 169 healthy adults (mean age = 39.4, 64.5% female) were sampled from the general population in the context of the ReSource Project. Stress, inflammation and neuronal atrophy were quantified using physiological indices of chronic stress (hair cortisol (HCC) and cortisone (HEC) concentration), systemic inflammation (interleukin-6 (IL-6), high-sensitive C-reactive protein (hs-CRP)), the systemic inflammation index (SII), hippocampal volume (HCV) and cortical thickness (CT) in regions of interest. Structural equation models were used to examine evidence for pathways from stress and inflammation to neuronal atrophy. Model fit indices indicated good representation of stress, inflammation, and neurological data through the constructed models (CT model: robust RMSEA = 0.041, robust χ2 = 910.90; HCV model: robust RMSEA <0.001, robust χ2 = 40.95). Among inflammatory indices, only the SII was positively associated with hair cortisol as one indicator of chronic stress (β = 0.18, p < 0.05). Direct and indirect pathways from chronic stress and systemic inflammation to cortical thickness or hippocampal volume were non-significant. In exploratory analysis, the SII was inversely related to mean cortical thickness.Our results emphasize the importance of considering the multidimensionality of systemic inflammation and chronic stress, with various indicators that may represent different aspects of the systemic reaction. We conclude that inflammation and glucocorticoid-mediated neurodegeneration indicated by IL-6 and hs-CRP and HCC and HEC may only emerge during advanced ageing and disorder processes, still the SII could be a promising candidate for detecting associations between inflammation and neurodegeneration in younger and healthy samples. Future work should examine these pathways in prospective longitudinal designs, for which the present investigation serves as a baseline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call