Abstract

To identify peptide units that make up a single-domain protein, we searched for possible combinations of N and C-fragments that exhibit functional complementation, and attempted an exhaustive evaluation of peptide unit boundaries. The tryptophan synthase α subunit was used as a model enzyme, which has a single TIM (β8/α8) barrel domain. Libraries comprising randomly digested N and C-fragments were constructed, and clones expressing enzymatic activity were selected by the ability to confer growth of the Escherichia coli trpA mutant on a medium lacking tryptophan. More than 50 clones were obtained, and two cleavable positions were found on the loops after extra-helix 2′ and helix 5. Half of the clones harbored N and C-fragments having an overlap between two fragments. The remaining clones harbored one fragment made by the fusion of N and C-fragments with insertional sequence duplication. Mapping the frequency of occurrence of fragment overlap and insertional duplication showed significant peaks at two loops, which coincide with the cleavable sites. These results suggest that the boundaries of unit fragments are located at these positions, and that bisection, fragment overlap and insertion are all possible at the unit boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call