Abstract

BackgroundInvestigating the spatial distribution of muscle activity would facilitate understanding the underlying mechanism of spasticity. The purpose of this study is to investigate the characteristics of spastic muscles during passive stretch and active contraction by high-density surface electromyography (HD-sEMG).MethodsFourteen spastic hemiparetic subjects and ten healthy subjects were recruited. The biceps brachii (BB) muscle activity of each subject was recorded by HD-sEMG during passive stretch at four stretch velocities (10, 60, 120, 180˚/s) and active contraction at three submaximal contraction levels (20, 50, 80%MVC). The intensity and spatial distribution of the BB activity were compared by the means of two-way analysis of variance, independent sample t-test, and paired sample t-test.ResultsCompared with healthy subjects, spastic hemiparetic subjects showed significantly higher intensity with velocity-dependent heterogeneous activation during passive stretch and more lateral and proximal activation distribution during active contraction. In addition, spastic hemiparetic subjects displayed almost non-overlapping activation areas during passive stretch and active contraction. The activation distribution of passive stretch was more distal when compared with the active contraction.ConclusionsThese alterations of the BB activity could be the consequence of deficits in the descending central control after stroke. The complementary spatial distribution of spastic BB activity reflected their opposite motor units (MUs) recruitment patterns between passive stretch and active contraction. This HD-sEMG study provides new neurophysiological evidence for the spatial relationship of spastic BB activity between passive stretch and active contraction, advancing our knowledge on the mechanism of spasticity.Trial registrationChiCTR2000032245.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.