Abstract

A geospatial database on the spatial distribution of rice areas and rice cultural types of major rice-producing countries of South and Southeast Asia has been developed in this study using remote-sensing and ancillary data sets. Multitemporal SPOT VGT normalized difference vegetation index (NDVI) data for the period 2009–2010 were used for the analysis. The classification was performed adopting ISODATA clustering to build a non-agricultural area mask followed by rice area mapping. The derived rice area was stratified by logical modelling of ancillary data sets into five rice cultural types: irrigated wet, upland, flood-prone, drought-prone, and deep-water. The uniqueness of this study is a synergistic approach based solely on single-source, high-temporal remote-sensing data coupled with ancillary data, which demonstrate the application of SPOT VGT NDVI data in building a geospatial database for rice crops over a wide spatial extent. This approach was adopted for cost effectivity as the study extent was vast and thus lacking ground truth information. Comparison of the derived rice area against the reported literature values for validation yielded a good correlation (linear coefficient of determination, R2 = 0.95–0.99). The high-temporal resolution NDVI data enabled effective characterization of vegetation phenology. The derived spatial outputs can be used in various studies associated with the assessment of greenhouse gas emissions from paddy fields, change detection, and inputs to crop simulation models, which are significantly related to different rice cultural types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call