Abstract
The modeling of underwater light field is essential for the understanding of biogeochemical processes, such as photosynthesis, carbon fluxes, and sediment transports in inland waters. Water-column light attenuation can be quantified by the diffuse attenuation coefficient of the downwelling irradiance (Kd) using semi-analytical algorithms (SAA). However, the accuracy of these algorithms is currently limited in highly turbid environments, such as Amazon Floodplains, due to the SAA parametrization steps. In this study, we assessed an SAA approach for Kd retrieval using a sizeable (n = 239) and diverse dataset (e.g., Kd (490) ranging from almost 0 to up to 30 m−1 with mean values of 5.75 ± 3.94 m−1) in Amazon freshwater ecosystem. The main framework of this study consists of i) re-parametrization of a quasi-analytical algorithm using regional in-situ inherent optical properties (IOPs) and ii) application and validation of SAA for Kd retrieval using in-situ and Sentinel-2/MSI (n = 49) derived from Remote Sensing Reflectance (Rrs). Overall, the performance of the calibrated SAA was satisfactory for both in-situ and satellite Rrs. The validation results with in-situ data achieved a Mean Absolute Percentage Error (MAPE) lower than 22%, Correlation Coefficient (R) > 0.80, Root Mean Square Error (RMSE) lower than 1.7 m−1, and bias between 0.73 and 1.34 for simulated visible bands of Sentinel-2/MSI (490, 560 and 660 nm) (VIS). The results using MSI imagery were similar to those of in-situ, with R > 0.9, MAPE < 20%, RMSE < 1.25 m−1, and bias between 0.98 and 1.10 for VIS bands, which illustrate the viability of this methodology for Kd mapping in Amazon Floodplain Lakes. Therefore, this study demonstrates a successful application of satellite remote sensing data for the spatialization of the Kd in the optically complex waters of Amazon Basin, which is essential for the ecological management of the Amazon Floodplain Lakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.