Abstract

BackgroundMembers of Enterobacteriaceae such as Escherichia coli O 157:H7, Salmonella sp., Shigella sp., Klebsiella sp., and Citrobacter freundii are responsible for the outbreak of serious foodborne illness and other mucosal infections across the globe. The outer membrane proteins (OMPs) of Enterobacteriaceae are highly immunogenic in eliciting immune responses against pathogens. Moreover, the OMPs are highly conserved in the Enterobacteriaceae family. Sequence homology in the OMPs will ensure the presence of conserved immunodominant regions with predominant epitopes. The OmpL is such an immunogen that is highly conserved among the Enterobacteriaceae pathogens. In this study, we performed computational analysis on the outer membrane porin (Omp) L of prominent Enterobacteriaceae pathogens. ResultsMultiple sequence and structural alignment analysis have revealed that the OmpL protein is highly conserved among the selected Enterobacteriaceae pathogens. This amount of sequence and structural homology uncovered the conserved antibody binding B-cell epitopes in the OmpL protein. The B-cell epitopes predicted in the OmpL of Salmonella typhimurium are highly conserved among the other Enterobacteriaceae pathogens. ConclusionIn conclusion, these conserved B-cell epitopes will vouch for the generation of heterologous humoral immune response in conferring cross protection against the Enterobacteriaceae pathogens and control their outbreaks across the globe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call