Abstract

To validate Bayesian multipoint MR velocity encoding against particle tracking velocimetry for measuring velocity vector fields and fluctuating velocities in a realistic aortic model. An elastic cast of a human aortic arch equipped with an 80 or 64% stenotic section was driven by a pulsatile pump. Peak velocities and peak turbulent kinetic energies of more than 3 m/s and 1000 J/m(3) could be generated. Velocity vector fields and fluctuating velocities were assessed using Bayesian multipoint MR velocity encoding with varying numbers of velocity encoding points and particle tracking velocimetry in the ascending aorta. Velocities and turbulent kinetic energies measured with 5-fold k-t undersampled 10-point MR velocity encoding and particle tracking velocimetry were found to reveal good correlation with mean differences of -4.8 ± 13.3 cm/s and r(2) = 0.98 for velocities and -21.8 ± 53.9 J/m(3) and r(2) = 0.98 for turbulent kinetic energies, respectively. Three-dimensional velocity patterns of fast flow downstream of the stenoses and regions of elevated velocity fluctuations were found to agree well. Accelerated Bayesian multipoint MR velocity encoding has been demonstrated to be accurate for assessing mean and fluctuating velocities against the reference standard particle tracking velocimetry. The MR method holds considerable potential to map velocity vector fields and turbulent kinetic energies in clinically feasible exam times of <15 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call