Abstract

An integrated, remotely sensed approach to assess land-use and land-cover change (LULCC) dynamics plays an important role in environmental monitoring, management, and policy development. In this study, we utilized the advantage of land-cover seasonality, canopy height, and spectral characteristics to develop a phenology-based classification model (PCM) for mapping the annual LULCC in our study areas. Monthly analysis of normalized difference vegetation index (NDVI) and near-infrared (NIR) values derived from SPOT images enabled the detection of temporal characteristics of each land type, serving as crucial indices for land type classification. The integration of normalized difference built-up index (NDBI) derived from Landsat images and airborne LiDAR canopy height into the PCM resulted in an overall performance of 0.85, slightly surpassing that of random forest analysis or principal component analysis. The development of PCM can reduce the time and effort required for manual classification and capture annual LULCC changes among five major land types: forests, built-up land, inland water, agriculture land, and grassland/shrubs. The gross change LULCC analysis for the Taoyuan Tableland demonstrated fluctuations in land types over the study period (2013 to 2022). A negative correlation (r = - 0.79) in area changes between grassland/shrubs and agricultural land and a positive correlation (r = 0.47) between irrigation ponds and agricultural land were found. Event-based LULCC analysis for Taipei City demonstrated a balance between urbanization and urban greening, with the number of urbanization events becoming comparable to urban greening events when the spatial extent of LULCC events exceeds 1000 m2. Besides, small-scale urban greening events are frequently discovered and distributed throughout the metropolitan area of Taipei City, emphasizing the localized nature of urban greening events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.