Abstract

The study integrates geographic information system (GIS) and analytic hierarchy process (AHP) to evaluate land suitability for maize production in Zimbabwe using multi-criteria evaluation (MCE) process. Four thematic maps based on rainfall, temperate, soil type and slope were integrated through overlay technique in a GIS environment to produce maize production suitability map. The resultant maize suitability map was overlaid with constraints map to ‘mask out’ all non-agricultural land. The final maize suitability map shows that 3.20% of the total land is highly suitable, 16.56% is suitable, 25.34% is moderately suitable, 32.33% is marginally suitable and 9.57% is not suitable for maize production in its current form. The maize suitability classification was validated by regression analyses using measured maize grain yield of 5 key maize varieties representing 5 different maturity groups. Grain yield was regressed against suitability index (SI) of each land class. There were significant positive correlations between maize grain yield and land suitability classes (R2 = 0.63 - 0.85). Integrating GIS and AHP with MCE is effective in assessing land suitability for targeting location specific interventions for maize production and the result is a comprehensive suitability map for Zimbabwe, incorporating several critical environmental factors affecting maize adaptation. We recommend the use of this suitability map as a decision support tool in land use planning and policy making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call