Abstract

Highland Andean ecosystems sustain high levels of floral and faunal biodiversity in areas with diverse topography and provide varied ecosystem services, including the supply of water to cities and downstream agricultural valleys. Google (™) has developed a product specifically designed for mapping purposes (Earth Engine), which enables users to harness the computing power of a cloud-based solution in near-real time for land cover change mapping and monitoring. We explore the feasibility of using this platform for mapping land cover types in topographically complex terrain with highly mixed vegetation types (Nor Yauyos Cochas Landscape Reserve located in the central Andes of Peru) using classification machine learning (ML) algorithms in combination with different sets of remote sensing data. The algorithms were trained using 3601 sampling pixels of (a) normalized spectral bands between the visible and near infrared spectrum of the Landsat 8 OLI sensor for the 2018 period, (b) spectral indices of vegetation, soil, water, snow, burned areas and bare ground and (c) topographic-derived indices (elevation, slope and aspect). Six ML algorithms were tested, including CART, random forest, gradient tree boosting, minimum distance, naïve Bayes and support vector machine. The results reveal that ML algorithms produce accurate classifications when spectral bands are used in conjunction with topographic indices, resulting in better discrimination among classes with similar spectral signatures such as pajonal (tussock grass-dominated cover) and short grasses or rocky groups, and moraines, agricultural and forested areas. The model with the highest explanatory power was obtained from the combination of spectral bands and topographic indices using the random forest algorithm (Kappa = 0.81). Our study presents a first approach of its kind in topographically complex Cordilleran terrain and we show that GEE is particularly useful in large-scale land cover mapping and monitoring in mountainous ecosystems subject to rapid changes and conversions, with replicability and scalability to other areas with similar characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.