Abstract

The Sanandaj-Sirjan Zone (SSZ) is considered as an important region for gold exploration in the western sector of Iran. Its mountainous topography and unpaved routes make its study challenging for researchers and raise the costs for mining companies strating new exploration plans. Gold mineralization mainly occurs as irregular to lenticular sulfide-bearing quartz veins along shear zones in deformed mafic to intermediate metavolcanic and metasedimentary rocks. In this investigation, ASTER data are used for mapping hydrothermal alteration minerals and to better discriminate geological structural features associated with orogenic gold occurrences in the area. Image transformation techniques such as specialized band ratioing and Principal Component Analysis are used to delineate lithological units and alteration minerals. Supervised classification techniques, namely Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) are applied to detect subtle differences between indicator alteration minerals associated with ground-truth gold locations in the area. The directional filtering technique is applied to help in tracing along the strike the different linear structures. Results demonstrate that the integration of image transformation techniques and supervised classification of ASTER data with fieldwork and geochemical exploration studies has a great efficiency in targeting new prospects of gold mineralization in the SSZ. The approach used in this research provides a fast, cost-efficient means to start a comprehensive geological and geochemical exploration programs in the study area and elsewhere in similar regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call