Abstract

Understanding proton transfer (PT) dynamics in condensed phases is crucial in chemistry. We computed a 2D map of N 1s X-ray photoelectron/absorption spectroscopy (XPS/XAS) for an organic donor-acceptor salt crystal against two varying N-H distances to track proton motions. Our results provide a continuous spectroscopic mapping of O-H···N↔O-··· H+-N processes via hydrogen bonds at both nitrogens, demonstrating the sensitivity of N 1s transient XPS/XAS to hydrogen positions and PT. By reducing the O-H length at N1 by only 0.2 Å, we achieved excellent theory-experiment agreement in both XPS and XAS. Our study highlights the challenge in refining proton positions in experimental crystal structures by periodic geometry optimizations and proposes an alternative scaled snapshot protocol as a more effective approach. This work provides valuable insights into X-ray spectra for correlated PT dynamics in complex crystals, benefiting future experimental studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call