Abstract

Aims. We observe the dense gas tracer CS in two nearby starburst galaxies to determine how the conditions of the dense gas varies across the circumnuclear regions in starburst galaxies. Methods. Using the IRAM-30m telescope, we mapped the distribution of the CS(2-1) and CS(3-2) lines in the circumnuclear regions of the nearby starburst galaxies NGC 3079 and NGC 6946. We also detected the formaldehyde (H2CO) and methanol (CH3OH) in both galaxies. We marginally detect the isotopologue C34S. Results. We calculate column densities under LTE conditions for CS and CH3OH. Using the detections accumulated here to guide our inputs, we link a time and depth dependent chemical model with a molecular line radiative transfer model; we reproduce the observations, showing how conditions where CS is present are likely to vary away from the galactic centres. Conclusions. Using the rotational diagram method for CH3OH, we obtain a lower limit temperature of 14 K. In addition to this, by comparing the chemical and radiative transfer models to observations, we determine the properties of the dense gas as traced by CS (and CH3OH). We also estimate the quantity of the dense gas. We find that, provided that there are a between 10^5 and 10^6 dense cores in our beam, for both target galaxies, emission of CS from warm (T = 100 - 400 K), dense (n(H2) = 10^5-6 cm-3) cores, possibly with a high cosmic ray ionisation rate (zeta = 100 zeta0) best describes conditions for our central pointing. In NGC 6946, conditions are generally cooler and/or less dense further from the centre, whereas in NGC 3079, conditions are more uniform. The inclusion of shocks allows for more efficient CS formation, leading to an order of magnitude less dense gas being required to replicate observations in some cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.