Abstract
Scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) can deliver information about variations of bonding at the nm scale. This is typically performed by analyzing the electron-loss near edge structure (ELNES) of given EELS edges. The present paper demonstrates an alternative way of a bonding examination through monitoring the EELS onset positions. Two conditions are essential for their accurate measurement. One (hardware) is using the dual EELS instrumentation that provides near simultaneous acquisition of low-loss and core-loss spectra. Another (software) is the least-square fitting of observed spectra to a reference spectrum. The combination of these hardware and software techniques reveals the positions of EELS onsets with the precision sufficient for mapping tiny variations of bonding. The paper shows that the method is capable of helping to solve practical tasks of nanoscale engineering like the analysis of modern CMOS devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.