Abstract

The Northwest Forest Plan (NWFP), which aims to conserve late-successional and old-growth forests (older forests) and associated species, established new policies on federal lands in the Pacific Northwest USA. As part of monitoring for the NWFP, we tested nearest-neighbor imputation for mapping change in older forest, defined by threshold values for forest attributes that vary with forest succession. We mapped forest conditions on >19millionha of forest for the beginning (Time 1) and end (Time 2) of a 13-year period using gradient nearest neighbor (GNN) imputation. Reference data were basal area by species and size class from 17,000 forest inventory plots measured from 1993 to 2008. Spatial predictors were from Landsat time-series and GIS data on climate, topography, parent material, and location. The Landsat data were temporally normalized at the pixel level using LandTrendr algorithms, which minimized year-to-year spectral variability and provided seamless multi-scene mosaics. We mapped older forest change by spatially differencing the Time 1 and Time 2 GNN maps for average tree size (MNDBH) and for old-growth structure index (OGSI), a composite index of stand age, large live trees and snags, down wood, and diversity of tree sizes. Forests with higher values of MNDBH and OGSI occurred disproportionately on federal lands. Estimates of older forest area and change varied with definition. About 10% of forest at Time 2 had OGSI>50, with a net loss of about 4% over the period. Considered spatially, gross gain and gross loss of older forest were much greater than net change. As definition threshold value increased, absolute area of mapped change decreased, but increased as a percentage of older forest at Time 1. Pixel-level change was noisy, but change summarized to larger spatial units compared reasonably to known changes. Geographic patterns of older forest loss coincided with areas mapped as disturbed by LandTrendr, including large wildfires on federal lands and timber harvests on nonfederal lands. The GNN distribution of older forest attributes closely represented the range of variation observed from a systematic plot sample. Validation using expert image interpretation of an independent plot sample in TimeSync corroborated forest changes from GNN. An advantage of imputed maps is their flexibility for post-classification, summary, and rescaling to address a range of objectives. Our methods for characterizing forest conditions and dynamics over large regions, and for describing the reliability of the information, should help inform the debate over conservation and management of older forest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call