Abstract
Atmospheric pollution is known to induce corrosion effects on various materials. For Greece, stone deterioration could emerge severe costs in the case of damaging cultural monuments. This work aims to investigate the corrosion process on materials of archaeological importance (marble, limestone, and sandstone) in the Greater Athens Area (GAA) by using sophisticated geoanalytical methods together with dose–response functions for selected materials, in order to derive corrosion maps for GAA in the period 2000–2009. Also, a corrosion trend analysis is performed, which can be a very helpful tool for the prediction of potential risks to monuments of cultural heritage due to atmospheric pollution. The corrosion effects on the selected materials are generally weak. Nevertheless, increasing corrosion trends are found in the eastern regions of GAA for all sheltered materials and in the northern parts of GAA for unsheltered marble. The technique is finally applied to 12 locations in GAA, which include some of the most important archaeological monuments of Athens, and provides comprehensive results for the estimation of the impact of atmospheric corrosion on the structural materials of these archaeological sites.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have