Abstract
This article presents a method, based on orbital remote sensing, to map the extent of forest plantations in São Paulo State (Southeast Brazil). The proposed method uses the random forest machine learning algorithm available on the Google Earth Engine (GEE) cloud computing platform. We used 30 m annual mosaics derived from Landsat-5 Thematic Mapper (TM) images and from Landsat-8 Operational Land Imager (OLI) images for the 1985 to 1995 and 2013 to 2021 time periods, respectively. These time periods were selected based on the planted areas’ rotation, especially the eucalypt’s short rotation. To classify the forest plantations, green, red, NIR, and MIR spectral bands, NDVI, GNDVI, NDWI, and NBR spectral indices, and vegetation, shade, and soil fractions were used for both sensors. These indices and the fraction images have the advantage of reducing the volume of data to be analyzed and highlighting the forest plantations’ characteristics. In addition, we also generated one mosaic for each fraction image for the TM and OLI datasets by computing the maximum value through the period analyzed, facilitating the classification of areas occupied by forest plantations in the study area. The proposed method allowed us to classify the areas occupied by two forest plantation classes: eucalypt and pine. The results of the proposed method compared with the forest plantation areas extracted from the land use and land cover maps, provided by the MapBiomas product, presented the Kappa values of 0.54 and 0.69 for 1995 and 2020, respectively. In addition, two pilot areas were used to evaluate the classification maps and to monitor the phenological stages of eucalypt and pine plantations, showing the rotation cycle of these plantations. The results are very useful for planning and managing planted forests by commercial companies and can contribute to developing an automatic method to map forest plantations on regional and global scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.