Abstract

This work aims to develop a new method to map Land Use and Land Cover (LULC) classes in the São Paulo State, Brazil, using Landsat-8 Operational Land Imager (OLI) data. The novelty of the proposed method consists of selecting the images based on the spectral and temporal characteristics of the LULC classes. First, we defined the six classes to be mapped in the year 2020 as forest, forest plantation, water bodies, urban areas, agriculture, and pasture. Second, we visually analyzed their variability spectral characteristics over the year. Then, we pre-processed these images to highlight each LULC class. For the classification, the Random Forest algorithm available on the Google Earth Engine (GEE) platform was utilized individually for each LULC class. Afterward, we integrated the classified maps to create the final LULC map. The results revealed that forest areas are primarily concentrated in the eastern region of São Paulo, predominantly on steeper slopes, accounting for 19% of the study area. On the other hand, pasture and agriculture dominated 73% of all São Paulo’s landscape, reaching 39% and 34%, respectively. The overall accuracy of the classification achieved 89.10%, while producer and user accuracies were greater than 84.20% and 76.62%, respectively. To validate the results, we compared our findings with the MapBiomas Project classification, obtaining an overall accuracy of 85.47%. Therefore, our method demonstrates its potential to minimize classification errors and offers the advantage of facilitating post-classification editing for individual mapped classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.