Abstract

BackgroundHousing mapping and household enumeration are essential for the planning, implementation, targeting, and monitoring of malaria control interventions. In many malaria endemic countries, control efforts are hindered by incomplete or non-existent housing cartography and household enumeration. This paper describes the development of a comprehensive mapping and enumeration system to support the Bioko Island Malaria Control Project (BIMCP).ResultsA highly detailed database was developed to include every housing unit on Bioko Island and uniquely enumerate the associated households residing in these houses. First, the island was divided into a virtual, geo-dereferenced grid of 1 × 1 km sequentially numbered map-areas, each of which was in turn subdivided into one hundred, 100 × 100 m sequentially numbered map-sectors. Second, high-resolution satellite imagery was used to sequentially and uniquely identify all housing units within each map-sector. Third, where satellite imagery was not available, global positioning systems (GPS) were used as the basis for uniquely identifying and mapping housing units in a sequential manner. A total of 97,048 housing units were mapped by 2018, 56% of which were concentrated in just 5.2% of Bioko Island’s total mapped area. Of these housing units, 70.7% were occupied, thus representing uniquely identified households.ConclusionsThe housing unit mapping and household enumeration system developed for Bioko Island enabled the BIMCP to more effectively plan, implement, target, and monitor malaria control interventions. Since 2014, the BIMCP has used the unique household identifiers to monitor all household-level interventions, including indoor residual spraying, long-lasting insecticide-treated nets distribution, and annual malaria indicator surveys. The coding system used to create the unique housing unit and household identifiers is highly intuitive and allows quick location of any house within the grid without a GPS. Its flexibility has permitted the BIMCP to easily take into account the rapid and substantial changes in housing infrastructure. Importantly, by utilizing this coding system, an unprecedented quantity and diversity of detailed, geo-referenced demographic and health data have been assembled that have proved highly relevant for informing decision-making both for malaria control and potentially for the wider public health agenda on Bioko Island.

Highlights

  • Housing mapping and household enumeration are essential for the planning, implementation, targeting, and monitoring of malaria control interventions

  • This high coverage of interventions has been monitored through entomological surveillance, annual malaria indicator surveys (MIS), and a health information system based on individual patient records [11, 12]

  • This paper describes the experience developing a cartographic system to map housing units and enumerate households on Bioko Island and how it has enabled the Bioko Island Malaria Control Project (BIMCP) to substantially improve its planning, service targeting, impact and coverage monitoring, to enhance the effectiveness of its interventions and to achieve a continued reduction of malaria burden on the island

Read more

Summary

Introduction

Housing mapping and household enumeration are essential for the planning, implementation, targeting, and monitoring of malaria control interventions. Recent analyses strongly suggest that autochthonous transmission may have been interrupted in many areas of the island and that observed prevalence could be largely attributed to importation [10] Behind these successful outcomes are years of funding that assured the scale-up of malaria interventions, including 10 years of extensive and intensive indoor residual spraying (IRS) followed by 5 years of targeted focal spraying, several mass distribution and hang-up campaigns for long-lasting insecticide-treated nets (LLINs) sustained by continuous distribution through antenatal clinics and intermittent primary-school campaigns, focal targeted larval source management, universally free malaria diagnosis and treatment, and intermittent preventive therapy for pregnant women. This high coverage of interventions has been monitored through entomological surveillance, annual malaria indicator surveys (MIS), and a health information system based on individual patient records [11, 12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call