Abstract

BackgroundMalaria is endemic with year-round transmission on Bioko Island. The Bioko Island Malaria Control Project (BIMCP) started in 2004 with the aim to reduce malaria transmission and to ultimately eliminate malaria. While the project has been successful in reducing overall malaria morbidity and mortality, foci of high malaria transmission still persist on the island. Results from the 2009 entomological collections are reported here.MethodsHuman landing collections (HLC) and light trap collections (LTC) were carried out on Bioko Island, Equatorial Guinea in 2009. The HLCs were performed in three locations every second month and LTCs were carried out in 10 locations every second week. Molecular analyses were performed to identify species, detect sporozoites, and identify potential insecticide resistance alleles.ResultsThe entomological inoculation rates (EIR) on Bioko Island ranged from 163 to 840, with the outdoor EIRs reaching > 900 infective mosquito bites per year. All three human landing collection sites on Bioko Island had an annual EIR exceeding the calculated African average of 121 infective bites per year. The highest recorded EIRs were in Punta Europa in northwestern Bioko Island with human biting rates of 92 and 66 mosquito landings per person per night, outdoors and indoors, respectively. Overall, the propensity for mosquito biting on the island was significantly higher outdoors than indoors (p < 0.001). Both Anopheles gambiae s.s. and An. melas were responsible for malaria transmission on the island, but with different geographical distribution patterns. Sporozoite rates were the highest in An. gambiae s.s. populations ranging from 3.1% in Punta Europa and 5.7% in Riaba in the southeast. Only the L1014F (kdr-west) insecticide resistance mutation was detected on the island with frequencies ranging from 22-88% in An. gambiae s.s. No insecticide resistance alleles were detected in the An. melas populations.ConclusionsIn spite of five years of extensive malaria control and a generalized reduction in the force of transmission, parasite prevalence and child mortality, foci of very high transmission persist on Bioko Island, particularly in the northwestern Punta Europa area. This area is favorable for anopheline mosquito breeding; human biting rates are high, and the EIRs are among the highest ever recorded. Both vector species collected in the study have a propensity to bite outdoors more frequently than indoors. Despite current vector control efforts mosquito densities remain high in such foci of high malaria transmission. To further reduce transmission, indoor residual spraying (IRS) needs to be supplemented with additional vector control interventions.

Highlights

  • Malaria is endemic with year-round transmission on Bioko Island

  • Human landing collections (HLC) A total of 11,822 Anopheles mosquitoes were collected by HLC in the three locations, of which 3,043 were further analyzed (Table 2)

  • High human biting and sporozoite rates in Punta Europa, in the north-western part of the island, indicate that the human population in this area are potentially exposed to about 840 infective mosquito bites per year when indoor and outdoor biting is taken into account

Read more

Summary

Introduction

The Bioko Island Malaria Control Project (BIMCP) started in 2004 with the aim to reduce malaria transmission and to eliminate malaria. While the project has been successful in reducing overall malaria morbidity and mortality, foci of high malaria transmission still persist on the island. The Bioko Island Malaria Control Project (BIMCP) in Equatorial Guinea is a public-private and civil-society partnership between Marathon Oil Corporation and its corporate partners; Medical Care Development International, a private voluntary organization; academic institutions; and the Government of Equatorial Guinea. The goal of the project is to substantially reduce malaria transmission and its associated morbidity and mortality and to potentially eliminate malaria on Bioko Island. The malaria control strategy of the BIMCP is based on a set of integrated interventions combining vector control, effective case management, prevention of malaria during pregnancy, behavioral change communications, monitoring and evaluation, and operational research [1]. In 2007 long-lasting insecticide treated bednets (LLIN) were distributed to all households to cover all sleeping areas [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.