Abstract
Thermo-mechanical effects due to changes in the ambient temperature on the shop floor and internal heat sources caused by the manufacturing process significantly contribute to the geometric deviations of a machine tool and therefore, the geometric deviations of the manufactured workpiece. Minimizing these thermally induced geometric deviations is worthwhile since the requested tolerances of machined workpieces become continually smaller nowadays. To investigate the overall deformations of a machine tool structure due to variations in ambient temperature the geometric errors of a five-axis machine tool at different ambient temperatures by means of a portable climate simulation chamber are systematically mapped. While positioning and squareness errors of the linear axes are significantly influenced by the ambient temperature, straightness as well as rotational errors were less sensitive to temperature effects. For the investigated machine tool errors of the two rotational axes are negligible due to an active cooling of these axes. Through numerical error compensation of the linear axes, the geometric errors of the investigated machine tool can be reduced up to 80%. Finally, an outlook how a temperature-dependent compensation could be derived from previously measured compensation fields at discrete temperatures and afterwards applied on-the-fly during manufacturing is given.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have