Abstract

We present a technique for determining the micro-scale AC susceptibility of magnetic materials. We use the magnetic field sensing properties of nitrogen-vacancy (NV-) centers in diamond to gather quantitative data about the magnetic state of the magnetic material under investigation. A quantum diamond microscope with an integrated lock-in camera is used to perform pixel-by-pixel, lock-in detection of NV- photo-luminescence for high-speed magnetic field imaging. In addition, a secondary sensor is employed to isolate the effect of the excitation field from fields arising from magnetic structures on NV- centers. We demonstrate our experimental technique by measuring the AC susceptibility of soft permalloy micro-magnets at excitation frequencies of up to 20Hz with a spatial resolution of 1.2 µm and a field of view of 100 µm. Our work paves the way for microscopic measurement of AC susceptibilities of magnetic materials relevant to physical, biological, and material sciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.