Abstract

Meiotic progression in Xenopus oocytes, and all other oocytes investigated, is dependent on polyadenylation-induced translation of stockpiled maternal mRNAs. Early during meiotic resumption, phosphorylation of CPE-binding protein (CPEB) is required for polyadenylation-induced translation of mRNAs encoding cell cycle regulators. Xenopus Gef (XGef), a Rho-family guanine-exchange factor, influences the activating phosphorylation of CPEB. An exchange-deficient version of XGef does not, therefore implicating Rho-family GTPase function in early meiosis. We show here that Clostridium difficile Toxin B, a Rho-family GTPase inhibitor, does not impair early CPEB phosphorylation or progression to germinal vesicle breakdown, indicating that XGef does not influence these events through activation of a Toxin-B-sensitive GTPase. Using the inhibitors U0126 for mitogen-activated protein kinase (MAPK), and ZM447439 for Aurora kinase A and Aurora kinase B, we found that MAPK is required for phosphorylation of CPEB, whereas Aurora kinases are not. Furthermore, we do not detect active Aurora kinase A in early meiosis. By contrast, we observe an early, transient activation of MAPK, independent of Mos protein expression. MAPK directly phosphorylates CPEB on four residues (T22, T164, S184, S248), but not on S174, a key residue for activating CPEB function. Notably, XGef immunoprecipitates contain MAPK, and this complex can phosphorylate CPEB. MAPK may prime CPEB for phosphorylation on S174 by an as-yet-unidentified kinase or may activate this kinase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.