Abstract

Leaf-color mutants have been extensively studied in rice, and many corresponding genes have been identified up to now. However, leaf-color mutation mechanisms are diverse and still need further research through identification of novel genes. In the present paper, we isolated a leaf-color mutant, ys83, in rice (Oryza sativa). The mutant displayed a yellow-green leaf phenotype at seedling stage, and then slowly turned into light-green leaf from late tillering stage. In its yellow leaves, photosynthetic pigment contents significantly decreased and the chloroplast development was retarded. The mutant phenotype was controlled by a recessive mutation in a nuclear gene on the short arm of rice chromosome 2. Map-based cloning and sequencing analysis suggested that the candidate gene was YS83 (LOC_Os02g05890) encoding a protein containing 165 amino acid residues. Gene YS83 was expressed in a wide range of tissues, and its encoded protein was targeted to the chloroplast. In the mutant, a T-to-A substitution occurred in coding sequence of gene YS83, which caused a premature translation of its encoded product. By introduction of the wild-type gene, the ys83 mutant recovered to normal green-leaf phenotype. Taken together, we successfully identified a novel yellow-green leaf gene YS83. In addition, number of productive panicles per plant and number of spikelets per panicle only reduced by 6.7% and 7.6%, respectively, meanwhile its seed setting rate and 1000-grain weight (seed size) were not significantly affected in the mutant, so leaf-color mutant gene ys83 could be used as a trait marker gene in commercial hybrid rice production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call