Abstract

Correlated metallic layered t_{2g}^{n} perovskites are intensively studied and yet their low-energy electronic properties remain hotly debated. Important elements of the puzzle, beside the on-site Coulomb repulsion, are the tetragonal crystal-field splitting and the spin-orbit interaction. Here, we show that they control the electronic properties principally via form and occupations of natural orbitals. We discuss consequences for shape and topology of the Fermi surface, effective masses, and metal-insulator transition, building a map of crystal-field effects. The emerging picture captures electronic-structure trends in this family of systems within a single framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.